Study on the critical conditions of ice formation for a continuous ice making system in a cooling pipe

Author(s):  
Hideo Inaba ◽  
Dong Won Lee ◽  
Akihiko Horibe
1964 ◽  
Vol 11 (01) ◽  
pp. 222-229 ◽  
Author(s):  
Isaac Djerassi ◽  
Albert Roy ◽  
Jorge Alvarado ◽  

SummaryHuman platelets frozen at −195° C (liquid nitrogen) retain their morphological integrity and ability to promote clot retraction when 5% dimethyl-sulfoxide and 5% dextrose are added to the suspending plasma medium. Slow freezing was more effective than direct immersion in the liquid nitrogen. Although similar results may be achieved with dimethylsulfoxide alone with rigidly controlled freezing rates, the addition of sugars may permit freezing under less critical conditions.Dimethylsulfoxyd und 5% Dextrose dem Plasmamilieu hinzugefügt werden. Das langsame Einfrieren ist effektiver als das direkte Eintauchen in flüssigen Stickstoff. Obschon ähnliche Resultate mit Dimethylsulfoxyd allein unter exakter Kontrolle der Einfrierungsgeschwindig-keit erreicht werden können, erlaubt die Zugabe von Dextrose ein Einfrieren unter weniger kritischen Bedingungen.


Author(s):  
Elena V. Bespalova

Ancient lake sediments of Bibirevo section in the Yaroslavl and Kostroma Volga region are studied by means of graphical analysis of taxonomical structure of diatom complexes. This method allowed to record critical points (change of areas of stability) in the development of a Neopleistocene lake during the transition from stage to stage, as well as from phase to phase.


Author(s):  
Houston Smith ◽  
Susanna Widicus Weaver ◽  
Stefanie Milam ◽  
Samuel Zinga ◽  
AJ Mesko
Keyword(s):  

Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2019 ◽  
Vol 5 (3) ◽  
pp. 213-223
Author(s):  
Muhamat Nofiyanto ◽  
Tetra Saktika Adhinugraha

Background: Patients with critical conditions in the ICU depend on a variety of tools to support their lifes. Patients’ conditions and and their unstable hemodynamic are challenges for nurses to perform mobilization. Less mobilization in critical patients can cause a variety of physical problems, one of them is cardiorespiratory function disorder. Objective: to investigate differences in heart rate (HR) and respiratory rate (RR) before, during, and immediately after early mobilization. Methods: This study employed quasi experiment with one group pre and post test design. Twenty four respondents were selected based on the criteria HR <110 / min at rest, Mean Arterial Blood Pressure between 60 to 110 mmHg, and the fraction of inspired oxygen <0.6. Early mobilization was performed to the respondents, and followed by assessments on the changes of respiratory rate and heart rate before, during, and immediately after the mobilization. Analysis of differences in this study used ANNOVA. Results: Before the early mobilization, mean RR was 22.54 and mean HR was 78.58. Immediately after the mobilization,  mean RR was 23.21 and mean HR was 80.75. There was no differences in the value of RR and HR, before and immediately after the early mobilization with the p-value of 0.540 and 0.314, respectively. Conclusions: Early mobilization of critical patients is relatively safe. Nurses are expected to perform early mobilization for critical patients. However, it should be with regard to security standards and rigorous assessment of the patient's conditions. Keywords: Early mobilization, critical patients, ICU


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Sign in / Sign up

Export Citation Format

Share Document